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The DKS fields are derived from a potential function written with Kerr 

coordinates:            A0 =
r

r 2+cos2θ
.       If we take gradients in both 

variables, we see fields:       E r=−∂ A0 /∂ r  and E θ=−∂ A0 /∂ θ .

This is the covariant form of gradient, so we must pay attention to the Kerr 

metric tensor. Unlike common spherics, we have a g11 =
r 2+cos2θ
r 2+1

,

and  the  √−g  is   (r 2+cos2θ)sinθ .   

       To express contravariant form we multiply by g11 .  We have 

dropped the off-diagonal term (Kerr coordinates)  proportional to 'm', the  

Schwarzschild term, so this metric term is just the inverse of g11 . We get:

    E r = r 2+1

r 2+cos2θ

∂ A 0

∂ r
,       and:   E θ =−

1

r 2+cos2θ

∂ A0

∂ θ
.

We may investigate divergence with this contravariant form.  Also we may 

multiply the two forms for energy density, to integrate over space:   

T = ∫d 3V (E aE
a) .

Section 1) ENERGY IN DKS FIELDS: Differentiating to get radial gradient,  

∂ A0

∂ r
= 1

r 2+cos2θ
− 2r2

(r 2+cos2θ)2
.

Let us abbreviate the cosine by writing 'c'.  This is a covariant form, so to get 

energy density we square this and multiply by:        g11=
r 2+1

r 2+c 2
.

The integration supplies a numerator term from the metric determinant, so we 

are integrating the square.   This may be surprising but manipulation yields a 
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form a bit easier to handle:

       τ = (r 2+1)[ 1

(r 2+c 2)2
− 4c2

(r 2+c 2)3
+ 4c4

(r 2+c 2)4 ]    

Over one hemisphere the cosine ranges from zero to one.  The radius ranges 

from α to infinity.  All three terms reduce, given integrations by parts on the 

second two, to the first form, and what remains is:

T = 1/2∫∫dr dc (r 2+c 2)−2 .

Integrating twice by c, this may be expressed:

T = 1/2[ 1

2r 2(r 2+1)
+ 1

2r2∫dc (r 2+c 2)−1 ]= 1
4r2 [ 1

r 2+1
+r −1 tan−1 r −1 ] .          

It remains to do the integration over  r.  

Let us consider terms near the inner limit of integration. Radius value 

is small compared to 1, so we are effectively, to first order, integrating a form:

τ = 1

4r 2 [1 + π
2r ] .    The first term seems welcome, as it integrates to inverse  r, 

although  the coefficient is too small by the factor of 4.   However the second 

term yields another order of inverse r  which is not welcome !!!                           

         Let us examine the θ-component for energy.  Look at these fields 

developed from the potential function:    

−E r
DKS =R−2−2r2R−4 = [R 2−2r2 ]R−4 = (−r 2+cos2θ)R−4 ; −E θ

DKS = rR−4(2cosθ sinθ) .

Multiplication by g 22 yields contravariant form in θ, and we examine the second 

term:                             −E θDKS = r R−6(2cosθsinθ) .

Once again when we construct the integrand, another factor of R 2  appears:

                   τ = R−8r 2(2cosθ sinθ)2 sinθ ,

so now we can write the integral: Multiplication by g 22 yields contravariant 

form in θ, and we examine the second term:

−E θDKS = r R−6(2cosθsinθ) .
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Once again when we construct the integrand, another factor of R 2  appears:

                   τ = R−8r 2(2cosθ sinθ)2 sinθ ,

so now we can write the integral:      

                            T =∫∫dr d θ r 2(r 2+cos2θ)−4(2cosθsinθ)2sinθ .

This may look horrendous but is quite soluble. Start with the angular integration, 

because it yields, in the end after several integrations by parts, 

          ∫ dc
r 2+c 2

= 1

r
arctan c

r
|0
1 .

At the lower limit things vanish, but at the upper one, c=1,  think of how r ranges. 

For large radii, things vanish, but for small, the arctan is π/2, so the result is  π/

(2r). I am leaping a bit but this works as we go to integrate also in r.  I use such 

seat-of-the-pants analysis:  to integrate by r, we include the factor on top:

∫dr r arctan1/r .

Now at small r, we can see the integrand goes as πr/2, and the integral has a 

positive exponent in r  and so is quite weak, evaluated at r = α .

           Refreshing the context here, with unitized elements,  the classical result 

for energy would be 4π/r, although I do not bother here with the 2π integration 

around the featureless circle.   I had formerly thought the radial contribution was 

small, but results here offer a chaotic result.                                              

Section 2) DIVERGENCE :  The divergence operator is:

      ∇⋅E = 1

√−g
∂
∂ x a

(√−g E a) .  

The simplest calculation to present is on my proposed near-fields, constructed 

for zero divergence:  E r =R−2 + k αR−2r −1P (θ) ,  and   E θ = k αR−2r −2 sinθcosθ . 

I have defined:    P (θ) = 3 cos2θ−1  .  Notation for the radial term is simplified:
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R 2≡ (r 2 + cos2θ) .    

Divergence is: ∇⋅E =R−2 ∂
∂ r

(R 2E r )+ 1

R 2 sinθ
∂
∂ θ

(R 2 sinθE θ) .                 

We can see the R-terms  cancel in both parts and this is what makes my 

divergence simple. Rewrite:      

             ∇⋅E = R−2 ∂
∂ r

[1 + k αr −1P (θ)]+
k α

r 2R 2sinθ
∂
∂ θ

[sin2θcosθ] .  

Bingo.  This is zero. 

Section 3)  ENERGY IN ALBERS FIELDS:  Energy density in my near-fields will 

be, acknowledging the orthogonality of components:

 T =∫√−g dr d θ E aE a .

Expressing the covariant field components:

E r = (r 2+1)−1+k α r −1(r 2+1)−1P (θ)    and    E θ = k α r −2sinθ cosθ .  

The integrand for energy of radial terms is:

    τ = √−g E r E r = R
2sinθ[(r 2+1)−1+k α r −1(r 2+1)P (θ)][R−2+k αr −1R−2P (θ)] .        

Arranging terms,             τ = [(r 2+1)−1+k α r −1(r 2+1)−1P (θ)][1+k α r −1P (θ)] =  

                     (k α)2r −2(r 2+1)−1P 2 + k αr −1(r 2+1)−1P + (r 2+1)−1 .

The readers may entertain themselves expressing these integrals, but first let us 

develop some analytic sense of the results. Integrating over θ  reduces a total 

only so much; we ask what terms are significantly large. Any (r 2+1)  has its 

near-field intensity cut back, clearly:  as 'r' gets small, it does not drive the 

denominator to zero. Thus we shall look at the first term. Evaluation at the inner 

limit of r = α  is the essence and only this term has significant magnitude.

                Remember that the added field components share an arbitary 

constant multiplier in my scheme, 'b'. This will be the FSC times some multiplier, 

'k', and there are two orders of it in the numerator. With two such quantities, the
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integration yielding something in the neighborhood of 1/r is reduced to k 2α . 

Let us look at the θ -component  of energy. 

The integrand of this part reads: 

τ = d 3V E θE θ ≈ R
2 sinθ r −4R−2sin2θcos2θ ,  

τ ≈ r −4sin3θcos2θ . 

Once again the integration in θ will reduce the total but not greatly, but we 

see a higher order of inverse 'r'  which is very powerful here.  The sines and 

cosines integrate fairly easily, reducing totals as expected, but the crux is the 

integral of ∫dr r −4 =−1/3 r −3 .  The (-1) sign in inconsequential since we 

analyze at the lower limit.   The numerator, as before, has k 2α2  but this is 

trumped by the extra order of 'r'  in the denominator.  Only such a term has the 

strength to yield adequate energy by the classical energy radius. 

                  This is such an important calculation that I detail it:

      T =∫∫dr d θ sin3θcos2θ r −4   or   T =−∫∫dr dc (1−c 2)c 2r −4 .                

Limits on r  are, r e  to infinity,  and the cosine ranges from -1 to 1 over the 

spheric volume. Thus,   T = 1

3r3
[2/3−2/5] , which is   T = 4

45 r 3
.

So the constants “eat up” one Oom.  

Recall that an arbitrary constant is available as coefficient, equally 

applied to the radial and the angular additions of electric field. Thus it will appear 

squared in the energy totals, at least aside from cross-terms, and also the 

“homogeneous” part of the radial field. These contribute not so much to energy. 

Figure the constant as:   K = k α . We need a net result of:    T = 2
α . ( I leave 

out final integration over φ. Our circles are assumed featureless. )  

If now we say let the inner radius equal  α, and equate energy forms:
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 2
α =

4k 2α2

45α3
,    

then we see that  k 2 = 22.5 ,  so  k = 4.7 .

This is the answer, if we add field components with equal  K. There 

is a second clear mathematic possibility.  Classical energy radius is conceptually 

simple. It answers the question, at what inner radius have we accounted for the 

particle's total mass/energy in the electric field???  Certainly we can ascribe                                              

experimental verity to the Compton wavelength, and it is 4π larger than Kerr's   

AM radius, 'a'.  If we multiply 'a' by the fine structure constant we have the 

classical radius. So what?  I think this is not such an experienceable quantity, 

and so let us perturb it smaller. It was conceived  as that radius in the case of 

business as usual IN A FLAT SPACE,  where energy is accounted for. The Kerr 

spin fields weaken electric near-fields, by altering the geometry of spacetime 

here. Thus is may be reasonable to ask, integrating a bit further inward, can we 

produce enough energy?

Since my added θ-component yields, under energy integration, three 

inverse orders of r,  this is powerful algebra. Observe a relaxed limit of 

integration:                        T = 4

45 r 3
= 2α−1 .

Now we apply a constant in a different manner, leaving the fields with a 

coefficient of 1,  but writing the radius itself, with a small constant:

       α−1 =
(α)2

22.5(K α)3
.  

We see that  K 3 = 1/22.5,  so  K = 1/ 2.7 =  0.37  .  This says, if we write the 

added field terms with appropriate orders of r and α,  we can integrate in a bit 

further, and get a good energy total. Results are quite distinct from the DKS 

analysis, as here the strength is manifested by the θ-component. 
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Only after doing this do I realize I defeated one purpose here. 

Leaving the added field magnitudes unchanged with no coefficient other than α, 

the radial field strength does go to zero at the original classical radius, and then 

I go in further. Thus it is possible to ask, what field might avoid such pathology? 

Observe that the inverse-cube of the inner limit is what matters, and also the 

square of the field strength.  How may we  leave the overall fraction in brackets:

E r =R−2 [1+α
P (θ)
r

] ,                  

just equalling zero at the inner limit, where P(θ) = -1 at the ring edge?  With a 

higher field strength, imagine such a factor on top. The analyzed fraction must 

balance its coefficient of 1/22.5,   so in fact if we relax the inner classical radius 

by a factor of 22.5 , then we need only increase magnitude of the field by the 

inverse of that number.  This is the farthest I can go with this idea.


