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In this study I equate the Schwarzschild metric terms with a speed-of-light moderated by 

changing permittivity. This reproduces the phenomenology of the GR equations, but I think it says we 
can interpret an event horizon as dielectric runaway. A finite 'thickening' of vacuum polarizability  
produces this, an infinite vaue of permittivity. We can perhaps do physics on a Euclidean manifold, 
interpreting the geodesics of light, etc., as slowing of light in an optically thick space.        

The Schwarzschild solution outside of a spherical mass is expressed:  
          ds 2 = S cdt 2 − S−1dr 2 − r 2d 2 ,

 where S≡1−2m /r .        We can express the speed of light at points near the 

event horizon in external coordinates as distinct radially and tangentially by 

setting ds to zero and considering differential changes in one direction:

             ∂r /∂t rad=c 1−2m /r   and  r ∂/∂t tan=c 1−2m/ r 1/2 . 

These may usefully be called 'nullspeeds', or lightspeeds in one locale as 

measured and expressed in the coordinates of another.  

Let us presume this might be created by a thickening of the 

vacuum raising the value of electric permittivity:   ≠0 ,  in a manner similar to 

dielectrics.  We are speaking about the virtual vacuum field as a responsive 

medium yielding  inhomogeneous charge and current response to disturbance. 

I shall show that a reasonable redistribution of the vacuum dipole field creates a 

field of increasing permittivity going to infinity at the Schwarzschild radius.  It 

then shows analytic behavior inside.  If, then, a dielectric gradient of vacuum 

polarizability can create the light paths of the relativistic solution, we may claim 

to have a completely new visualization of the general relativistic differential 

calculus.  The polarizability field is also the substrate of the matter field, so all 

such physics transforms accordingly.  Accepting the GR field solutions, we can 

try to understand them as generated on a Euclidean space by an anisotropic 

polarizability field.  The electron field solution of my first paper showed how 

radially oriented dipole divergence offers asymptotic permittivity and optical 

slowing to zero, but in an azimuthal sense there.  So, the near-field solution of 
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the relativistic electron must model that, and the far-field for neutral matter must 

give the polarizabilities to reproduce the above velocities.  

In dielectric hole theory we get a result predicting a singularity between 

electric field and polarization field:      P1−R /30=RE ,       where R is 

polarizability.  If we figure permittivity:                   

 K=/0=
32R /0
3−R /0

.    

One could argue there is no hole to hide in and we should use a fluid model, but 

this is a good place to start.  Further understanding should show if this is 

justified.  Our gravitational theory uses the speed of light in a dielectric and lets 

polarizability increase to match the GR results.  For the two aspects we need:

              V rad=
c

 K r

=c1−2m/r  ,  and V tan=
c

 K t

=c  1−2m/r . 
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 The first result to understand is that the event horizon is the result of 

permittivity blowing up to infinity there.  The vacuum polarizabilities required to 

create this, however, at r=2m, are:    R r /0=3    and   Rt /0=3 .  In the far 

limit we see the two quantities go as  4m/r  and 2m/r, respectively, and at the 

origin both have a limit of  -3/2.   There is no zero for real r in the first 

denominator; there is in the second at r=4/3m.  There is a zero for the first term 

at m=r, but none in the transverse case.   

At this point we need to observe that radial velocity is affected by 

dipoles oriented in the transverse direction, and vice versa.   As in an anisotropic 
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crystal there are distinct values of polarizable populations, which here come 

together at radius zero or 2m.  We must look to the physics of particles  

uncovered in my electron study, vis-a-vis  the vacuum dipole excitation to 

illuminate such behavior.   I suggest there that the radial dipole population is 

depleted, and this is the implication of the above results.  

Behaviors of the two permittivities are more simple as we can see:  

K r=1−2m/r −2 ,          K t=1−2m/r −1 . 

The radial form remains positve coming down from the asymptote at  r=2m.  At 

the origin it becomes zero.  The transverse form becomes negative between the 

horizon and its zero at the origin.  It may well be that magnetic permeability has 

to be included , since it is the product of    which is significant in wave 

propagation.  I offer here a theoretical beginning by positing the necessary field 

changes to permittivity variation as proportional to magnetic permeability, so 

they both vary with gravitational 'density' of the vacuum.

         Let us now assume that inside a gravitational event horizon the magnetic 

permeability remains positive, and ascribe the metric field to permittivity 

changes.   Locally the speed of light, expressed in external Euclidean 

coordinates, goes as the inverse of    .   If we allow a negative argument 

then the result is imaginary.  For transverse modes this multiplies the argument 

of the usual spatial form:  ei  x t , where x t  refers to any path of angular 

propagation, and the result indicates absorption of any transverse radiation 

modes.  Radial permittivity is positive and so presents the behavior we 

previously expected,  with propagation slowing near the horizon, and going to 

infinity at the origin.  We have, however, not disallowed transverse modes, and 

this may offer different understanding of the interior physics.   The exterior field 

has no such pathology; it may be interpreted as dielectric vacuum polarizability, 

distinct in radial and transverse modes,  both reaching critical value  
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approaching the horizon from the outside,  and giving the expected far field.  


