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      I dedicate this study to Ludwig Boltzmann.

Rather than relegating divergence of the electric field to a point of charge, 

posit a thickening near-field of charge density described by:

ρ = q 0
e−r

r
. 

This radial coordinate shall be scaled to match the real energy and charge, 

along with  q 0 .  We treat this as a vacuum manifestation and ascribe 

circulation at the speed of light,  with a somewhat obvious angle factor:

j =ρc sinθ .

In my 2005 study I describe solution consistent with Maxwell's equations, where 

the job is to solve for magnetic vector potential. The electric component is easily 

integrated, and tho charge density peaks as inverse radius at the center, there 

are no infinities or residues when we integrate for observable quantities. This is 

the genius of the math expression, also used by Yukawa to represent the strong 

force.  We get a near-field falling away in the far, to be scaled for whatever 

problem is being considered.

 The magnetic vector potential consists only of Aϕ , following the 

circular currents posited.  It can be expressed as:

Aϕ = 2
3
r−2−1

3
e−r (2r−2+2r−1+1)−1

3
[(∫dr e

−r

r
) −γ] .

All expressions have implied constants in front of them, which we leave out for 

now, as described at the start.

I am inspired by Alexander Burinskii's electron model where the 

outer electric and gravitational field,  i.e.  the Kerr solution, yields entirely at the 

classical energy radius, to a false vacuum of string theoretic description.  My 
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inhomogeneous near-field may similary be 'plugged in'  since it is indeed scaled                          

at about the classical radius.  This approach also answers to obviating the 

embarrassing orders of infinity, as the E-field is increasingly 'shaded down'  

going inward and integrations for charge and for field energies are indeed calmly 

behaved and finite.  The model describes a steady “thickening” of the vacuum 

and electric permittivity rises asymptotically toward the center.  

The Kerr metric solution is not simple and working with the 

determinant is at first daunting and difficult.  My original study was analyzed in  

4-vector potential field equations, but now we must work in tensor form. My 

source may be simply written:      sa = e
−r

r
[1, 0, 0, sinθ] .  Note the presumed 

speed 'c' cancels since we would write j/c.   Maxwell's equations are succinctly 

expressed:                    
∂(√−g F ab)
√−g ∂x b

= sa ,     and for the electric field:

∂E r
∂ r

+ ∂√−g
√−g ∂ r

E r = e−r

r
.

Now we state the Kerr metric: 

ds s = g 00(dx
0)2 + g 11(dr )

2 + g 22(d θ)2 + g 33(d ϕ)2 + g 03dx
0d ϕ

with: g 00 = 1− 2mr

r 2+a 2cos2θ
,  g 11= − r

2+a 2cos2θ
r 2+a 2−2mr

, g 22= −(r 2+a 2cos2θ) ,

     g 33= −[(r 2+a 2)sin2θ +
2mra2sin4θ

r 2+a 2cos2θ ] , and g 03= − 4mra2sin2θ
r 2+a 2cos2θ

.

We need to state the determinant,  which is g 11g 22 (g 00g 33 + g 03
2 ) :

                        −g =(r 2+a 2cos2θ)2sin2θ .

One may express  the derivative of the logarithm. Call 'D'  the square root of  -g,  

and note the factor of  2.  We drop terms in 'm'  since it is so small.
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                        Γ ≡ r ∂D
D ∂ r

= r /2 ∂g
g ∂ r

= 2r2

r 2+cos2θ
   .                               

Note the r  on the LHS, for simpler writing.  In the far field we expect a result of 

simply  2,   and this is the case.

       When the vacuum is deemed 'empty', there is no source term, and we 

may divide out the 'E':                        
dlnE
dr

+dlnD
dr

= 0 .  

This gives simply,  E = D−1  within a constant multiplier;  the θ-dependence 

drops away, as discussed below, on page 5. 

               The cosine term equals one,  on the z-pole, so let us analyze  behavior 

at different distances. 

                          Γ pole =
2r2

1+r 2 .

The far-field yields the value '2', and in the near approaches  zero!   We can see 

this holds on the entire disk, characterized by  r = 0.   At the edge of the ring 

also the cosine goes to zero, so we must analyze with care.  As we approach 

the disk from the outside, the limits are clear, since identically θ = π/2 , and 

r>0. Thus the exponent is the far-field value. As we range up or down, tho, we 

again see dependence dropping to zero;  there is a functional balancing act with 

small 'r'  and small  cosθ.  Thus in a 'small' radius around the edge there is a 

transition region, near the disk.   

              We may then describe a lobe, a locus of  Γ=1 .  It includes the outer 

edge point,  and is solved simply as  r = cosθ, which intersects  the pole. At the 

mid-angle, π/4, a value of 1  is reached at radius slightly smaller than 1 /√2 .  

           The classical energy radius is  a/137,  so this phenomenology is strong 

before this smaller dimension is reached. Yet the existence of this spacetime                                                                                  

field depends on our assumption of a source. Burinskii excises the inner region 



-4-           

utterly, proclaiming a false vacuum of string theoretic characteristics. In late-

breaking results, he informs me there is another component to the electric field !   

Examine the vacuum divergence equation:             

∇⋅E = 0 = D−1 ∂(DE b )
∂x b

¿
.

If we look for a  θ-component,  then we have a sum of two terms:

∂(DE r)
∂r

+ ∂(DE θ)
r ∂θ

= 0 .      

This seems to be a difficult situation, since there are two field variables, but only 

one constraining equation. If we retain the validity of the radial part, however, 

acknowledging the integration by  'r',  which yields a constant on the RHS, the 

constant may also be a function of  θ.  We want no further angular dependence 

in the far-field, and yet the far-field determinant contains sin2θ .  We are free to 

divide this out. 

  We must have the second term also zero, and the same argument 

applies except we are now integrating by  θ,  so the RHS 'constant' may include 

any arbitrary function of radius.  Other than that it is also proportional to the 

inverse of D!  Our physics dictates this falling off in the far-field.  We know also 

that near-field falloff in the radial part shows the need for stronger fields here, 

and in fact two orders of inverse 'r'  are called for.   Posit an angular component 

of:   E θ = r −2D−1 ,  although here the denominator contains    sinθ,  and this, 

when squared for energy density, is not finite under integration. We must find a 

further program of logic. Our radial far-field is successful, but perhaps a lower-

order term could be added to it so the sum of divergence terms, along with a                               

changed θ-dependence  for that component, yields zero.  
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We took our initial radial form to satisfy: D E r= f (θ) , 

but find the inverse sine function not tolerable so let us assume it gone !!  Rather 

a more reasonable function would have this dependence in the numerator, so 

the pole itself does not offer pathologic behavior.  Since the determinant also 

has this term:      E θ ≡(r 2+cos2θ)−1sinθ   and   DE θ = sin2θ ,   so the derivative 

of  this by θ gives:                       
∂(DE θ)

∂θ
= 2sinθcosθ .

Looking at the sum of terms on the previous page, we may 

divide by the sine:                                 
∂(DE r )
sinθ∂ r

+ 2
r
cosθ = 0 . 

We ask what may be added to the first term?  We know the second term would 

satisfy the differential constraints with any arbitrary 'coefficient'  in   r.   Let us 

create an added radial term, knowing that our first solution is valid and yields 

zero to the differential operator:            
∂(DE q )

∂ r
,     so a further term must add 

to the second term to yield zero.  We know the second term may be freely 

adjusted in the radial coefficient, as the first term may be adjusted in the θ-

dependence. We choose:                         E q = 2 r −1D−1sinθcosθ    and also,

E θ =D−1r −1sin2θ ,  since we have been looking ahead to what is needed!  The 

first \expression is one order in  r  stronger in the near-field, and the second is 

two orders more.

Examining the sense of these fields, we see the θ-component would 

be better rendered as a cosine, for symmetry.  Likewise the cosine is not 

welcome in our radial part.  Let us use:            DE θ = r −1sinθcosθ .      

This gives terms symmetric about the z=0  plane:  r ∂(DE θ)
∂θ ≈ cos2θ−sin2θ ,   
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so we choose:        E q = r
−1D−1 sinθ(cos2θ−sin2θ) .      There is yet a problem 

balancing the sinθ  of the radial addition.  Let us use instead for the component 

in  θ :       r ∂(DE θ)
∂θ ≈sinθ(2cos2 θ−sin2θ) .                    

It is now clear what the radial addition should be.  To summarize the fields we 

have constructed:                    

E r =( r 2+cos2θ)−1 + α r −1 (r 2+cos2θ)−1(2cos2θ−sin2θ) ,       and                   

E θ = α r −1(r 2+cos2θ)−1 sinθcosθ .

               At the inner limit of E-2 or the classical energy radius, we see the 

added radial part overwhelms the oppositely-oriented original term.  We may 

however scale together the added components, E q and E θ ,  by the same 

constant.  A first effort will then  be to make the radial terms equal and opposite 

at the inner limit, as shown by including  α  as a coefficient.  The fine structure 

constant is indeed the ratio of the classical energy radius, and the angular 

momentum radius, 'a'.

             We square the orthogonal components and add the results. I show the 

analysis of the last radial term,  which can be better traced if we alter the form of 

the added radial part:                   2cos2θ−sin2θ = 3cos2θ−1 .    The integrations 

must include a coefficient on the differential volume element, of D, and are :  

               T =∫
r e

∞

dr ∫
0

π

d θ (r 2+cos2θ)sinθ α2r −2(3cos2θ−1)2(r 2+cos2θ)−2

.

Observing that:           d (cosθ)=−sinθ(d θ) , examine the last term of the three 

in squaring the  Legender term:           T =∫∫dr dc (r 2+c 2)r −2(r 2+c 2)−2

Here I confess to appreciating the CRC integral tables for the c-integration:

                        T (r ) = α2∫
r e

∞

dr r −2[
c
r
tan−1 c

r
] ,    evaluated in c.
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We get contribution at c=1, so:      T = α2∫dr r −2 [r −1 tan−1r −1]              

The inverse tangent at small 'r'  is π/2, so the significant integration in 'r' is:

       T = π
2

α2∫
r e

∞

dr r −3 = π
4

α2

r e
2 .           

Any order of 
α
r e  equals 1.  

Completing the other terms, we see we have done too well.  We 

have cancelled out the radial field where it was strong, so to this order of terms, 

the radial field shows only small energy totals!!! The original radial term 

integrates to π lnr e ,  but the cross-term of the two parts equals  -π.   Back to 

our drawing boards.  The first  energy term is dependent on inner radius, without

α .  This changes only slowly  so it makes not a large difference in the final 

sum.

                 The integration of E θ   energy yields a value if π/4, and the total 

energy is:                T = π(lnr e
−1− 1/4) .    

With r e=1 /100,  the logarithm equals 4.7.   There are two avenues available for 

this theoretic thrust. Any constant multiplier where we have put α,  cannot be 

any smaller. We have need to make it larger, and this will succeed, in fact, 

embarrassingly!  The number needed is very near 2π.  All four of the integrals 

relevant to the present sum are simple fractions of π, and I can write a quadratic 

equation in  'α' and it shows the above number works.  It would be perhaps  

about 2π, but in a separate short study I have figured the magnetic energy of a 

superconducting current loop at r e  to be 8π.  The actual fine structure 

constant in this entire exercise  is figured at 1/100 rather than 1/137, just for    

easy numbers. I believe this is not intrinsic to the logic of the maths.  The only 
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assumptions have involved statements like,  r e=αa≪ a  where a is angular 

momentum radius, roughly E-13 meters. We are accustomed to defining the 

classical energy radius according to total particle energy and electric field rules.   

It should read as: 4π/r e ,  in a 'unitized' presentation such as here; electric 

charge is seen as: q=1=e /4 πϵ0 .  

               I simply do not include here, the symmetric 2π integration in φ.  Thus 

my result should say TOTAL ENERGY=200. We could subtract the magnetic 

energy of 8π to look for an electric total of  ≈175.  However it seems the 

classical radius is simply defined in terms of electric field, even if this is not a 

real, specific quantity. The present arithmetic attack is not a change in the FSC;  

we are free to multiply our 'inhomogeneous' added field terms by the same 

arbitrary constant.

                 The other avenue would be to choose a higher order exponent for the  

inverse 'r'.  Since energy density is the square of the field, this rapidly increases 

totals, and it looks like a fractional power would be needed.  The path I now take  

is the simpler.  It will be noted the radial field just outside the ring goes through 

zero  and actually is reversed.  This is manifest in a narrow sheath, near the 

outer part of the disk.  At the disk, Cartesian radial changes map into the 

θ-variable, so in as far as the Legender term is negative,  or:  3cos2θ=1 ,   this 

is so. Later I shall present the locus where radial field goes through zero.

Let us condense our notation, so that:   P ≡3 cos2θ −1 ,               

and radially:                R 2 ≡ r 2 + cos2θ ,       Total energy has four parts, and the 

fields are now:            E r = R
−2[1+P α/r ] ,     and:      E θ = R−2(α/r 2)sinθcosθ . 

Squaring both components, we see the radial parts produce three terms, and 

the angular part, one. The total energy integrates to:
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   T = π [−log r e− α
r e

+ 3
4
( α
r e

)
2] .                                    

          Let us increase the arbitrary constant along with  α  by a factor 'k':

        T = π[−log r e−k + 3/4k 2] ,

We acknowledge the ratio with the FSC  to be 1.   We can see that if k = 2π,  

our total is only about 60, so we need a larger number still. This is simply a 

numbers game, and if we choose  k=9,  we get:

T = π[4.7−9+61]≈180 .       

This is a comfortably close figure, and if we evaluate  k=10, this yields more 

than 200.  My feeling is that the classical energy radius is not a physically 

measured quantity,  and we know there is some magnetic energy as well as 

electric, although it seems to be much smaller. A number slightly larger than 9 

works, and 3π  is within a half-percent.

In my original inhomogeneous model, magnetic energy was a bit larger 

than electric field energy.  My presumed charge cloud distribution produces this 

relationship, but I posited increasing charge and current going inward. If my first 

attempt to calculate magnetic energy of the superconducting loop in the present 

model is correct, it is 8π, or about 25, except there is a surfeit of terms in r e

in the numerator, and this makes it clear the magnetic total is small.

At this point, it is salutary to examine the Kerr coordinates near the ring. 

Recall that the entire disk is characterized by r=0.  The ring lies at a Cartesian 

radius of 'a'.  Just outside and in the z=0 plane, cosθ =σ = 0. , so:

r 2 = r C
2 − a 2 = r C

2 −1. .                                               If r =  9/100,  

then:                r C
2 = 1 + 0.0081 ,     and:        r C =1.004 .              We see the 

Cartesian radius increases much more slowly here;  a Kerr radius of 9 times

r e  is only 0.4 r e  in Cartesian space. 



            -10-               

It is also useful to get a sense of the magnetic energy. Without any detailing of 

angular distributions, we may consider a “very thin ring” of current at  the inner 

radius and represent it by a Dirac delta function.  Given a charge 'e' circulating 

around the ring, we may represent the current:       j =ec /2π r e .  This will be 

the RHS  source term for the magnetic vector potential   Aϕ ,  which is solved 

by the method of variation of parameters. We know the homogeneous roots:    <

r −2 , r >  and their Wronskian is  −3r−2 .  Thus we may construct the 

inhomogeneous form:

Aϕ =(−1 /3) r−2∫dr r r 2δ(r −r e) =−
r e

3

3r2
. 

This is the only relevant root, since the other one represents a constant 

magnetic field.  

Magnetic source energy density may be stated:    Aϕ⋅j ,

and its total may be integrated:                    Ξ =∫dr r 2Aϕ⋅j .   

Again the delta function selects the inner radius, and we see that: 

Ξ =−ec
6π
r e

2 .

It is clear this is a very small quantity compared to unity, since the inner radius 

equals the AM radius divided by 100 (or by the inverse FSC).   


