
ELECTRON FIELD SOLUTION WITH CIRCULAR CURRENTS
by Norman Albers

PART I:  Field Solutions of the Electron 

Electromagnetic  theory  has  been  incapable  of  modeling  the 
electron  as  a  field  because  it  represents  point  charges  in  a 
vacuum.   Offered  here  is  a  reasonable  and  mathematically 
minimal  construction  of  inhomogeneous  charge  and  current 
terms,  added  to  the  usual  far-field.   Thus  the  severity of  the 
singularity is limited and now fully integrable.  The existence of a 
static, circular mode of solution is proposed.

             It is thought by most that quantum mechanics comprises all that may be 

said about the fundamental quanta.  A self-consistent construction assumes an 

inhomogeneous spherical charge, and circular current field.  Working in spherical 

coordinates,  one  finds  that  only A generates  reasonable  behaviors  at  the 

origin.   For  the  same  reason  there  must  be  no  time  dependence  in  scalar 

potential, U.  If field strengths go as r-1 at the origin then observables have finite 

integrals, as they (energy, angular momentum, etc.) go as r-2.  This motivated the 

mathematical winnowing process.  The physics is that of a static charge-current 

assembly with a factor of ½ for correct accounting of energy interaction terms. 

“Static”  means “unchanging in  time”  and so includes  momentum and current 

circulating steadily around the z-axis.

The complete current equation is

□ A∇∇⋅Ac−2∇U / t = j /o c
2

If U is static,

( ) ( )2 2
0 1 .c A cε−∇ × ∇ × + = ≡A j&&

Assuming A  is only ˆAϕϕ , and that 0=A& ,
2 2 2 2sin .rA A r A jϕ θ ϕ ϕθ− −∇ + ∇ − = −

Choose -dependenceθ  of sinθ , or 1
1 ( )P θ .  The -operatorθ  resolves:

2 22 .rA r A jϕ ϕ
−∇ − = −

This is the relevant current equation.  Posit now an inhomogeneous, static 

charge/potential field:
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( )1
0 1 .rU U r e− −= − −

The combination of terms makes manageable the singularity, and 1 rr e− −  gives a 

charge density of:
2 1

0 .rU U r eρ − −= −∇ = −

Treat this as moving locally at the speed of light in ϕ̂ :     ( 0 1U ≡ )

sin ,j cϕ ρ θ= ±

where the sign is chosen for up-down consideration.  This is justified if the 

momentum of the current mode is taken as ρA .  If we could multiply momentum 

by charge/mass, we should have current.  Use 2c− ⋅j A as the mass-energy:

2 2 2
ˆ .c c

j
ρ ρρ  = = ⋅ 

j A A
j A

Thus, j cρ= ± , in Â .

We can see that a positron will also have positive energy: the sign of the current 

determines the sign of A , and only  changes to positive.  I offer no physical 

justification for choosing mass-energy so; this is the only analytically soluble 

case and is thus useful.  

Take a positive current as the source term of the inhomogeneous current 

equation,
2 2 12 sin .r
rA r A cr eϕ ϕ θ− − −∇ − = −

Even though these modes are unchanging in time, a Poynting flow can be 

construed as:

.r θ ϕ× =E B P

We are generating a magnet with near and far fields, opposites.  Thus P  

changes direction.  We chose to identify one direction for j , and this is 

consistent with Aϕ  being positive-definite:  
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( )1 2 2 1 12 1 1sin 2 2 1 .
3 3 3

r rA r r r e r r e drϕ θ γ− − − − − − − = − + + − − ∫
The homogeneous term, in r−2 , is put in to cancel the singularity.  At the origin, 

field strengths go as r−1 ; densities of conserved quantities go as r−2 , and 

integrate without singularity when multiplied by  r2  in the volume element.

This model yields a fine-structure constant of roughly unity, to be 

explained elsewhere.  All quantities have been integrated to the origin, with no 

cutoff!  Since energy density continues to climb as r−2 inside the classical 

radius, and was already roughly 910 gm/cc, neutron star density of 1610 gm/cc is 

surpassed within four magnitudes of reduction in r .  Beyond here, and without a 

massive core there is no reason to be stopped at the phase changes 

distinguishing phases of stellar masses, one must clearly have a relativistic 

model 1.  Density can be seen to rise to immense values as r approaches the 

Planck length, though there is no central spike of total energy, charge, or angular 

momentum.

The mathematics is identical to the superconducting solution in a material 

(London and London 2; Meissner 3), except that they posit zero charge 

accumulation.  Solving Aϕ  under this assumption,
2 2 22 .rA r A Aϕ ϕ ϕλ−∇ − =

This is a homogeneous equation, solved by:      ( 1λ ≡ )

( )2 1 .rA r r eϕ
− − −= +

The same terms are seen shifted around after we let this current be seen as a 

charge field, and solve for the inhomogeneous part of the scalar potential U :
1 1 .r rU r e r e dr γ− − − −= + −∫

The electron is thus clearly seen as a “superconducting” spherical cloud by virtue 

of being the sum of homogeneous and inhomogeneous fields.  From his vantage 

point 250 years ago, Leonhard Euler receives his due.
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PART II:    Dielectric Interpretation of Electrons
Given a charge distribution of:

                                       ρ=−r−1e−r , 

we are free to interpret its source.  If we think of it as a monopolar density we 

identify:                              ρ≡∇⋅E , 

then we could integrate for E, and get:

                             E=r−2r−1e−r . 

We may imagine now a polarization field P  with divergence such that it accounts 

for the charge density:               −∇⋅P=ρ . 

This is saying P  is equal and opposite  to the inhomogeneous part of the electric 

field. To complete E, however, add a homogeneous term to balance the 

singularity in r−2 :              E=−r−2r−2r−1e−r . 

Now we can look at P/E  to get to permittivity:

                               h−1=P/E=N /1−N  , where  N≡1re−r . 

This yields:                               h=1/1−N  , 

and a physically interesting model.   Electric field can be expressed:

      E=−r−21−N  . 

Taking the limit at the origin, the behavior of permittivity is:

                                      lim
r0
h=1 /2r

−2
. 

The speed of light is the inverse square root , or:

                lim
r0
c/h=r2 , 

and tends to zero at the center.  This preserves a coherent circulation of energy, 

since despite the assumption of no A/ ,  energy does flow in  and 

imagined wavefronts pivot.   This is another phase state of light, just as ice is 

another form of water with a different physics of its constituents.  There is no 
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further need to explain mass.  If we see how energy is "convinced" to spin in a 

small locale,  there is no further question if it manifests the electric and magnetic 

fields of the electron/positron.  The physics being illuminated here is of the dipole 

contribution from the vacuum.  Whether the picture of quantum mechanics of 

virtual "particles" is more accurate than one of space as a more infinitesimal sea 

of available inhomogeneous fluctuations, there must be the manifestation of 

charge and current.  In a concurrent paper on Photon Localization, I show how 

such physics allows the existence of localized wave packets.  That analysis can 

be applied directly to vacuum fluctuations to reveal non-quantized charge 

densities, such as are needed here.  Regardless, we can speculate on some 

fascinating possibilities.  If we picture a dipole pair, and it points outward in a 

negative electron field, the particles will be drawn back together to annihilation. 

Those pointing inward, parallel to the total electric field (we defined it this way, 

since the inhomogeneous part is smaller than the homogeneous), will be tugged 

apart somewhat.  We can see a natural selection in harmony with the stability of 

this state of energy.  Furthermore, the positive end will be closer to the center 

and feel a slightly stronger electric field, so it is more strongly attracted than the 

negative end is repelled.  Thus, the dipole as a unit experiences an attraction 

toward the center.  This is a remarkable state of affairs for a system which, 

viewed as a classical "assembly of charge", should want to fly apart.   There will 

be a diffusion of dipoles inward;  they cross vertical lines of magnetic field, and 

this turns the two particles in opposite directions sideways, or into  , 

contributing to the circular currents which must exist.  Beyond that, we can  say 

that there is a negative dipole pressure, as they are attracted inward.  This is 

notably important especially for the relativistic solution needed at very high 

energy densities near the singularity.  Reminiscent of Higgs theory which 

depends on negative pressure, this is presumably a manifestation different from 

Higgs bosons.
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PART III:  Effective charge                                                                                    
In a field of varying permittivity we expect to experience an electric 

charge by the relationship:    E=q /4r 2 .  Let us look at charge as the 

effective measurement experienced in this electron field, and write:   

             qeff=4r
2E . 

In the limit at the origin the electric field goes to -1/2, as can be seen by 

expanding the exponentials in the expression for E.  Permittivity goes as the 

inverse square of radius so these terms cancel.  This says that the observer 

always feels the same charge is yet present at the center even though part of the 

inhomogeneity lies outside the region of interaction.   

PART IV:  Magnetic Moment Interaction Integrals
The electron is modeled as an inhomogeneous 

charge distribution: =r−1e−r ,   and current is taken as: j=±sin .  Let 

j  be  positive for the spin-down case, with magnetic moment in z .  We may 

integrate the energy of a magnetic interaction with a relatively weak and locally 

uniform 'lab' field by integrating the z-component of a spin-aligned state: 

=∫0
∞

Bzd
3V .   This will yield the contribution from the fields, and later we 

express source terms.    Starting with the vector potential of: 

A=1/3sin[2r
−2−2r−22r−11e−r−r [∫r−1e−r−]] , 

we take the curl to produce the B-field in spherical coordinates:  

B=r rsin−1∂sinA−r 
−1∂r rA . 

Projecting the z-component and completing the differentiation in θ,

   Bz=−BsinBr cos=sin r−1∂rrA2cos
2sin−1r−1A . 
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Now let us write only the radial dependence:         A≡Ar  ,        and collect 

terms:          Bz=sin2r−1∂rrA2cos
2A  . 

We may now complete the angular integrations, with their implied  sin∂ , 

and write: Bz=4 /3r
−1[∂rrAA] . 

For the final integration radially:  BzT=∫0
∞

dr r 2Bz , but we integrate the first 

term by parts:     

BzT=4/3[∫0
∞

dr r ∂r rAr A]=4/3[r 2A∣0
∞−∫0

∞
−r Ar A] . 

Thus we are left with only a kernel to be evaluated on both a vanishingly small 

interior radius and the far sphere (only the ∫0
2

d  is not yet expressed).  Any 

finite magnetic dipole has a far field of: limr∞ A≃r−2 ,  and I describe a near 

field whose contribution is of higher order and thus vanishes. These are the two 

constraints on any such electrodynamic theory, and reflect aspects of divergence 

analogous to the electric field.  One should not interpret too literally, however, 

since we are distilling only the radial function of the azimuthal vector component 

here, and the total vector field has zero divergence since it consists only of 

A with no variation in Φ.  Thus we have a simple rule to evaluate the field 

contribution, and given the far limit of A as inverse square: limr∞BzT=8/9 . 

Consider now source contributions from currents.  A locally uniform 

magnetic field may be described as: AL=
1
2

BLrsin , and we construct an 

energy term from current: je⋅AL=
1
2

BLe
−r sin2 .    This is easily 

integrated in θ and radially: ∫r 2dr sind j e⋅AL=4/3BL , 

so we can say there is a contribution to the magnetic moment from electron 

current, 4/3.   A more subtle issue is a far-field contribution from jL⋅Ae . 

Given that the far electron field is 2/3r−2 ,  what do we make of this implied  
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source of our ideal lab field?  Under realistic assumptions we will see a distinct 

residue here, depending on field  construction.   A simple assumption of a lab 

current loop would yield gradients in magnetic field above and below the loop 

plane.  We can consider a Helmholtz coil arrangement as the simplest way of 

eliminating first and second derivatives of the field in a region sufficiently large 

that far-field approximation is good.  There is a problem here of approximating 

the "ideal lab field", becuase fundamentally circular sources cannot produce this! 

The third consideration of a solenoid source offers the most uniform far-field so 

we can take a sufficiently large dimension that integrals are accurate.  The 

reader may confirm that a single loop source yields interaction response of 4/3; 

Helmholtz coils give 0.93;  and the solenoid yields 2/3.  It is gratifying to see this 

convergence, so I take the latter value:  ∫d3V jL⋅Ae=2/3BL . 

Adding together the three contributions:

=8 /94/32/3=2.89  

All quantities in this discussion are without the final 2π from the Φ integration. 

PART V:  The Bohr Magneton
 Consideration of quantized interactions gave us the representation of the 

Bohr magneton, or electron magnetic moment,  as: e=ℏe/2mec .  One of the 

challenges of field construction is to produce this product by separately 

integrating, for the electron model,  the angular momentum, charge, and mass 

totals.  Construct the former:    

Jz=∫d3V z⋅r×A , 

as a source term integration of linear momentum density ρA at a radius, 

projected into the z-axis.  This is detailed as:

JZ=∫ r 2drsinddsine−r A

JZ=4/3∫drr 2e−r A . 

Evaluating this integral requires some subtlety in analyzing residues at the origin, 

as all the poles in  r  or   lnr   cancel, but contributions from   and  ln(2)  must 
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not be neglected.  The result is:

JZ=4/3[1/8−4/32 ln2−2]=3.27  

and is equated to ℏ/2 .

Next we figure total charge, easily available as:  e= ∫d3V  = 2 , 

after r and θ integrations.  Finally and more difficult, what is mass?  We must get 

total electric and also magnetic energies, separately.  It is not given that they are, 

here, equal;  this is not an E&M wave.  We trust that for any electric sources, the 

integral of field-squared equals that of ρU;  similarly for magnetic energy, so that 

we may say for totals, 

mc2=∫d3V U j⋅A . 

The first integral is easily accomplished and is equal to unity.  The second 

reduces to: 4/3∫dr r e−r A=4/3[−5/64/3ln2−]=1.15 , 

and we see magnetic energy is slightly larger than electric, by about 15%! 

Therefore total mass-energy is: mc2=2.15 .

Now we are in a position to multiply totals in the Bohr magneton: 

ℏe/2mc=3.27 x2/2.15=3.04 . 

Comparing this to the first determination of 2.89, we see a 5%  disparity.  What 

of this?  Had the answers come out too closely it would have been embarrassing 

because we know that intensities toward the center demand a relativistic solution 

which can be expected to compress the inner region.  I think it reasonable to 

guess that the angular momentum integral will come down somewhat as it is 

most strongly dependent on radial spreading.  The results we have here are 

sensible.  


