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One may calculate total energies in an inhomogeneous EM system by 

either integrating the field terms, or the source terms, and results should match. 

In my circular current electron one may ask if this holds true for angular 

momentum (AM).  The model is centered at the origin, so we look at the field 

density of linear momentum, then take the vector cross-product with radius.

Given a charge density the source term of momentum is: P s= A .,

while the field term uses the Poynting vector:           P f =
E×B
c 2

At any location the contribution to AM is:             S = r ×P .  

Let us take the difference of these two terms and integrate over all space, to see 

if they are indeed equal totals.  I shall leave out the polar angle dependences in 

sin , as they add nothing to the problem. Also. Set c=1:

 =∫V d
3V r×[A−E×B ] .

Substituting for charge and for B,   =∫V d
3V r ×[∇⋅E A − E×∇×A ] .

I shall take advantage of the simple orientations of the fields, given radial 

electric field, and azimuthal currents and A-field. The magnetic field, as the curl 

of  A , has components in both  r ,  , so the cross-product with 'E' selects 

only the latter. Thus both terms are in   and the last cross-product puts it all 

into vector sense − . 

By expressing these orthogonal relations we can transform the problem 

into one of divergence integration. Substituting for both differential operators:

 =∫V d
3V −r [r −2A d

dr
r 2E  E 1

r
d
dr

rA ] . 

Expand the first term:     =−∫V d
3V { A

r
2rEr 2 dE

dr
  E d

dr
rA } .            
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Clear up the form:             =−∫V d
3V {2EArA dE

dr
EAr E dA

dr
} ,  

and finally:       =−∫V d
3V { r d EA

dr
3EA } .  

The trick needed here is writing a total divergence form.  We create a 

radial vector form:               W ≡ r rEA ,       and take its divergence:

               ∇⋅W = 1

r 2

d
dr

r 3EA  = 3EA r d EA 
dr

.

Lo and behold our job is finished, since we have established the integral as that 

of a total divergence. Gauss' Law enables us to analyze this at far radius, where 

we know both  E  and  A  go as inverse square of radius. The area of the far 

sphere goes as  r 2 , so the quantity r 3EA . becomes negligibly zero, and the 

problem is solved.  


