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Abstract:  The Kerr solution of the Einstein field equations (EFE’s) [1] presents a 
curved spacetime geometry, in which the flat-space rules of field divergence do not 
hold. Tensor math is needed to express possibilities. Energy integrations show the 
failure of Debney, Kerr, Schild (DKS) fields [2] in producing correct energy totals, and 
the success of the proposed Albers fields. Expressed in Kerr’s geometry, the Albers 
electron field was plotted [3] and reveals the conformation of field components,  in 
Cartesian form. There are individual electric field lines as well as a color-coded scale of 
energy density, stated at the bottom. Also stated is the angular spacing of individual 
lines, since in the far-field they are identified as radial “spokes”. These plots give insight 
into the structure and behavior of the electron fields.  

 
1.  Schwarzschild and Kerr solutions  

 
In 1963 Roy Kerr solved the EFE’s  by expanding the Schwarzschild solution. The 
equations produce a final Laplacian form, which is solved by inverse radius. This may 
be offset by any constant, and still be a solution, and Kerr chose an imaginary constant 
to offset one axis.  This brilliant move allows us to identify angular momentum as a field 
source . 
 
The Schwarzschild solution gives us a metric form, in spherical coordinates, of: 
 
 - …(angular terms)                         (1)s dt  1/S drd 2 = S 2 −  2   
 
with the usual flat-space angular terms. We set the speed of light equal to 1. Here S is 
defined as    where     with a central source of mass/energy 1 2m/r,S =  −   GM /cm =  2  
‘M’.  If we allow the z-axis to be offset by some imaginary constant, ‘a’,  

 
  - ,,,     (2)          ds  t  {r  a  cos θ} / { r } dr  (r a cos θ) dθ   2 = d 2 −  2 +  2 2 2 + a2 2 −  2 +  2 2 2  

 
Here we leave out terms proportional to ‘m’  since in the realm of elementary particles, 
this is a vanishingly small quantity.  For electrons the Schwarzschild radius is 10-57m, 
and neither I nor many other folks are concerned about physics at such small dimension 
It is of little concern that the theory produces something not useful, here.  We may also 
simplify by setting a=1, and identity metric terms as:  
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                = 1,    =  ,     =  .                          (3)g00 g11 r cos )/(r ) ( 2 +  2 2 + 1 g22 r cos θ) ( 2 +  2  
 
Tensor calculus gives form for divergence of a field: 
 

  )   ,  IV 1/D =  √− etd /∂x∂  
i (√− et d F  

i                   (4) 
 
In the Kerr geometry, there is a non-trivial determinant whose root is given by 
 
                                                 .r cos θ) sinθ√− etd = ( 2 +   2                                          (5)  
 
Note the flat-space form has no cosine.  
 
2.  DKS complexification 
 
In 1969 the DKS paper on complexification of the field equations was published, and 
presented an electron field solution. First we quote the mathematical characterization of 
divergence in a curved space: “An integrable space [exists] if and only if the Riemann 
tensor is identically zero.” [4]. I add, “uniquely integrable”. We are looking at any vector 
field under parallel displacement.  This complicates the calculus between a field and 
any potential form supposed to generate it; there is not an unique relationship.  One 
may choose to start with a potential expression and take gradients to get fields.  The 
reverse operation IS NOT UNIQUE, there is path dependence. There may be fields with 
zero divergence that do not trace back to an unique potential form. 
  
Not all complexifications are useful!  The electric near-field produced by the DKS 
methodology may be integrated for its total energy, by constructing the integral of field 
squared.  We must correctly include the relevant form of differential volume element:  
  

 .V  d3 =  √ et − d xd3
 
i       (6) 

Total electric energy will be:                 ; 1/2  E d V  ξ =  ∫
 

 
 2 3  

 the geometry gives two near-field components, one in r  and another in    The DKS.θ  
fields are: 

 
                     =     and   =  2r  .            (7)Er − c )/(r c )( r2 +  2 2 +  2 2 Eθ in θ cosθ/(r  )s 2 + c2 2  

 
 

 



  

From this point I write the cosine as c.  The only strength in this field is  the radial 
component as the reader will see after going thru this account. In a tensor space we 
write an invariant form for the square:   , acknowledging the DKS field is aE EE2 =  i

i  
covariant construction;  it is taken as the gradient of the real part of complexified inverse 
radius !  Again we need to follow rules of tensor calculus and raise the index on the 
field:      which in the present case is:    .  Since we have droppedg EEi =  ik 

k Er = Er g11  
off-diagonal terms as vanishingly small, we may simply invert the metric coefficients. 
Thus, 

              . 1/2 (r ) d Vξ =  ∫
 

 
Er2 2 + 1 3  

We can see a cancellation in one order of  and so:r c ),  ( 2 +  2   

     .     (8)ξ 1/2 [(− c ) /(r c )  ] (r ) sinθ drdθdφ =  ∫
 

 
 r2 +  2 2 2 +  2 4 2 + 1  

Our interest lies in the near-field limit of r ;  in the far everything reduces to just one over 
r-squared. Readers may convince themselves that the numerator term in   is muchr2  
smaller than that with 1, so we ignore it. The relevant part is:

 . 1/2 ( r r c )/(r ) dr(− c)dφξ =  ∫
 

 

4 + c4 − 2 2 2 2 + c2 4 d        (9) 

All these integrations contain  so we may write this as  . The integration isinθ dθ s c− d  
approachable by parts, with details given in Appendix A. The result is unsatisfying: 
 

 1/4r(1 /4r) ,ξ =  + π      (10) 
 
to be evaluated at the inner ‘energy radius’, since in the far there is, as before, no 
contribution. In this result, the first term is too small by a factor of 4, from the unitized 1/r 
we expected, but the second term is too large.   I have personally challenged Alexander 
Burinskii to defend his support of these fields - this is yet to be forthcoming.  
 
 
 
3.1  Albers fields 
  
The DKS fields have no great intensity close in except near the ring equator edge,  and 
the field component in θ is fairly weak at mid- because of the presence of r in the θ  
numerator. The Albers fields are constructed to process well under the divergence 
operator, and are thus necessarily contravariant.  Rearranged radial dependencies 
produce a different set of fields, still having zero divergence, as do the DKS, though 
these integrate well: 

 



  

 
      and     .1/(r )] [1 r P (θ)]   Er = [ 2 + c2 + k −1 k sinθ cosθ/r (r )Eθ =  2 2 + c2             (11) 
 
Forming the invariant expression for energy density, as before, but starting with this 
contravariant field, we will see strength is now in the angular component. 
Orders of the polynomial    vanish, and here is no such intensity at the ringr )( 2 + c2  
edge; our “PAC-MAN” shaped region is blue and theirs is red!  Looking at the DKS 
radial field term, we see a curious null point where  , the “Tinker Bell”  region, orr2 = c2  
point). The point on the central spin axis, the ”z”-axis, where r=1, both field components 
are zero. The first version of Albers fields showed a similar “Tinker Bell” point just 
outside the ring edge! We may let go of our use of the classical energy radius here, and 
clearly this is not a classical situation. The inner limit of our energy integration may be 
chosen to make more sense.  
 
There is another arbitrary constant multiplying both added field components. If they are 
divergence-free fields, contributions from r  and θ cancel, and can both be multiplied by 
a common factor. Thus the Albers field construction presents two arbitrary constants. 
This allowed the Tinker Bell point to be sequestered just at the ring edge ! Each added 
field component is multiplied by k, and also the inner integration limit is k. The 
denominator of the integrand contains   from being squared, and in the numerator isr4  

. Thus the integration result goes as   .k2, /r  k2 3   
 
3.2  The expressions 
 
As stated in eq. (11), the radial component of the Albers electron field is given by 
 
                                                ,                                     (12)r )  [1 k/r P (θ)]Er = ( 2 + c2 −1 +   
 
where P is the second Legendre polynomial of the cosine of polar angle  ,θ  

 - 1. The value of k is the fine structure constant reduced by a factor of(θ) 3cos θP =  2  
22.5.  This factor comes about from the integration of energy density of the  term.   Theθ  
electric field tangential component is given by: 

 
                                                   .                                  (13) k sinθ cosθ/r (r )  Eθ =  2 2 + c2  
 
When squared, its numerator contains: The integrand issin θ cos θ cos θ(1 cos θ). 2 2 =  2 −  2  
written:   , and both factors of   in the denominator are(1 ) dc (c c )dcc2 − c2 =  2 −  4 r ) ( 2 + c2  
cancelled out, one by lowering one index, and the other by including  .  Thus weVd3  

 



  

simply perform and evaluate the integral of cosines. This gives:  
 

           .                                (14)c (c ) 1/3 1/5 2/15 ∫
1

0
d 2 − c4 =  −  =   

There appears a factor of ⅓ from the r-integration, so we see 2/45, or 1/22.5.  
 
3.3 Divergence  
 
Define  D =   and   divergence is:    . We find ourselves√− etd IV  D  ∂/∂x  (D E )D =  −1 i i  
with two electric field components as of 10-13m. The Kerr reference frame is rotated with 
respect to  the external Cartesian frame, and furthermore, a second component is 
produced, in θ.  In both the DKS fields and the Albers fields each component produces 
a divergence, but they are equal and opposite. Each field has zero divergence. Plots of 
these fields are shown below. This is the manifestation of the non-integrability  of a 
curved spacetime.  The Albers fields cannot be traced back with an “un-gradient” 
operation, to a single potential form, and the DKS fields can.  We should move on 
starting with good fields, and not concern ourselves with having no unique potential 
form.  
 
3.4  The plots  
 
After much learning combined plots were constructed with electric field lines and field 
density. The field lines were computed by integrating Er  and E  inward from regularlyθ  
spaced starting points. The outer distance in Figure (1) is ~3a.  In absolute terms, 
 

   ,                                                      (15)a J /c m = G 3  
 
where m is the Schwarzschild radius,  GM/ .   Thus,m = c2  
 

  a = J/Mc  ,                                                             (16) 
 
and for electrons is about 10-13m ! Compared with the Schwarzschild radius of 10-57m, 
this term is almost macroscopic. The intrinsic angular momentum is ℏ/2 . 

 



  

 

 
Fig 1. Electron field orientation (lines) and density (colors). The origin is in the center 
and x and y vary between +/- ~3 times the Kerr radius. The x-axis is in the equatorial 
plane and y represents the polar axis. 
 
The integration starting points are specified in Cartesian azimuthal intervals depending 
on the plot magnification. For each plot frame we perform the line integration inward 
considering the electric field in Kerr metric coordinates using eqs. (12), (13). The result 
is transformed into Cartesian coordinates for display. The entire series of larger 
magnifications, including zooming animations may be seen at [3]. We see individual 

 



  

electric field lines exhibiting a very near-field behavior of sweeping at an oblique angle 
into the source layer at  . This layer is by Alexander Burinskii’s theory, “very thin” [5] atre  
the boundary of a false vacuum regime inside. Any charge layer must, by 
electrodynamic constraints, be very thin. If it weren’t, concentric layers would 
magnetically coalesce. 
 
 

 
Fig 2: Same as Fig. 1, except zoomed in at the Kerr ring edge at x=+1, y=0. Y varies 
between +/- 4.8k. 
  

 



  

Figure (2) shows a greatly magnified plot at the edge of the Kerr ring, source of ‘charge’. 
k  is  (1/137) x (1/22.5). Relationships between various distance parameters are 
summarized as follows: 
 

                                       ,                                             (17) r  k =  e =  a
(22.5/α) /3000~ a  

 
where a is the Kerr radius and  is the fine structure constant. α  
  
4. Conclusion  
 
Before these plots were done correctly in November, 2016,  I was pursuing all analytic 
means available to see and understand what was being expressed in mathematics. One 
can plot one line at a time, not enough to see the conformations of the field. Two things 
are clear:  the very near-field sweeps at an angle as it nears the source. Scale here is of 
the order of the energy radius, out to maybe ten times this, 10k. This field sweeps just 
outside the charge/current source, and is in high contradistinction to the DKS fields [1], 
whose θ-component dies away close in. Those fields meet the source perpendicularly. 
Second, one is struck by the overall smoothness and circularity of field intensity, also 
extremely different from DKS fields, with their null point at r =1 on the spin axis. 
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APPENDIX A   
  
Integration of radial DKS field energy starts by constructing: 
 

     =  . EEr r r )/(r ) [(− ) /(r ) ]( 2 + 1 2 + c2 r2 + c2 2 2 + c2 2  
 

The integral reads:  .              ξ r c (r )(r r c )/(r ) =  ∫
∞

r 
d ∫

1

0
d 2 + 1 4 + c4 − 2 2 2 2 + c2 4   
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The custom here has been covering one hemisphere of integration with  cos(θ) going 
from 0 to 1.  We can make a useful rearrangement of the second parenthesized term, if 
we add and subtract  :   (...) =  , since now the first threer c2 2 2 r r c r c( 4 + c4 + 2 2 2 − 4 2 2)  
terms equal the square of  .  We can do the parts integrations in c  if wer )( 2 + c2  

continue:                             ]  .c [1/(r )  4r c /(r )∫
1

0
d 2 + c2 2 −  2 2 2 + c2 4  

The same trick, this time adding and subtracting  , gives a nicely workable form:c4 4  

 .                             c[1/(r )  c /(r ) c /(r ) ∫
1

0
d 2 + c2 2 − 4 2 2 + c2 3 + 4 4 2 + c2  4   

The two higher-order denominator terms will blend into the first one.  Each parts 
integration takes two orders of c to reduce the denominator order by one, as follows: 

           uses   ,c c /(r )4 ∫
1

0
d 4 2 + c2 4 ,  dv dc/(r )u = c3  = c 2 + c2 4  

 whence   .                         du c dc,  v − /(3 )(r ) = 3 2  = 1 • 2 2 + c2 −3   
 
The first “uv”  term is:          when evaluated over the limits in c.v|   (1/2) /(r )u 1

0 =  2 + 1 3 
 

Such a term will contribute not much when integrated by r .  The inner radius limit is 
much less than 1, since in this theory, it is taken as the fine structure constant.  The 
significant integral term is now: 

                                                  ,4/2) c[c /(r ) ]( ∫
1

0
d 2 2 + c2 3  

which is the same form as the second term we start with. Adding the two, we can write: 
  

.c [1/(r )  c /(r ) ] ∫
1

0
d 2 + c2 2 − 2 2 2 + c2 3   

The same process will reduce the second term to be like the first ! We get an important 
factor from this parts integration, so that our total in terms of the first term, is: 

 ½  .c 1/(r )  ∫
1

o
d 2 + c2 2  

Now we fetch the CRC integral tables,  #48, and analyze to get:                 

.               (1/4r ) c /(r ) (1/4r )  [1/(r ) (1/r) tan 1/r] 2 ∫
1

0
d 2 + c2 =  2 2 + 1 +  −1  

In the inner limit for integration over r, the remaining step, the arctan is close to  , and/2π  
once again we may ignore small r compared to 1, and  write: 

           1/4 r  [1/r 1/r  π/2]  1/4 [1/r π/(4r )]. ξ =  ∫
 

 
d 2 +  3 =  +  2   

This is the result of integrating by r  and by θ, as we understand an implied 2π with the 
final angular integration. The point is comparing this with the simple integration of a one 

 



  

over r-squared field, which yields here a value of 1/r, leaving out the 2π. Given a 
hemispheric treatment we expect half the usual value, but this result does not yield that!  
 

 


