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ABSTRACT:   Electron near-fields in Kerr geometry may be integrated for field 

momentum, given motion of the particle.             

INTRODUCTION:          In Richard Feynman's second volume of Lectures on 

Physics, he dedicates all of chapter 28 [1]  to discussing inertial mass, and field 

momentum. In flatspace, the calcs are of course simple. Two factors of sinθ 

arise with the same integral expression we constructed for field energy density, 

namely the square of electric field, so the result is 2/3 of the former energy total 

integral.  It should be ½, and this method betrays a problem in our simple former

theory.  With Kerr's metric solution [2] applied in particle near-fields, we might 

expect different results, as angular symmetry is strongly altered. Plotting lines of

constant radius, or polar angle, in Kerr coordinates, yields the ellipses of  r,  and 

“scarab” lines perpendicular, for constant θ. Here we get expressions for electric

field components in both directions in the near-field.   The z-coordinate is in 

common with Cartesian maps, so we seek an expression for lines of constant θ 

to understand the local rotation of the Kerr basis with respect to our Cartesian 

'picture'.  With this in hand, we may integrate z-components of the momentum 

field. We can see the radial field lines of the two systems converge in the far-

field, and also that Kerr radii approach the inner energy integration limit 

vertically, mostly. This is certainly so in the “latitude midrange” where the 

angular field component is significant.                                                                    

      I do not see the DKS [3]  fields to be useful; the complexified inverse 

radial form as potential function, does not yield good field energy totals. Thus I 

offer analysis with my proposed near-fields. Results are highly provocative, and 

average the same as integrated E-squared energy. In a separate paper I show 

details of integrations yielding bad results with DKS fields.

   We sense problems in accounting for field components in the 'equatorial'
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case. First, tho, if we are looking down the SPIN-axis, integration over φ is   

trivially 2π. To correctly write an  x-component of field momentum, we will 

consider variation around the circle in  φ.   Consider first the 'axial' case, of  

momentum for an electron moving in z. In the Kerr geometry, we deal with both 

radial field components, and also in θ. Expressions are in Kerr's coordinates, as 

are the integrations we work with, E r andE θ , so I derived an expression for 

local coordinate system rotation, but rather than take a path of rigorous math 

expressions, let first try to look at the physics, keeping in mind the two very 

different coordinate systems here.  Consider coordinate lines of constant θ, at 

small radius. The locus of r=0, in a CARTESIAN MAP,  is the disk, z=0, for radii 

in the x-y plane ≤ a,  the characteristic angular momentum radius of Kerr. 

Except for right near the edge of this disk, these radial 'spokes' exit upwards or 

down, vertically. Then out a few radii, they have rotated to the usual far-field. Let

us call the angle of the Kerr reference frame  'β', so in the far-field β=θ. Using

c≡cosθ one can show:

sin2β =
sin2θ
r 2+1

     and     cos2β=
r 2+c 2

r 2+1
.                     

Since the integral always has sinθ dθ = -d[cosθ], this is very useful and shows 

the symmetric behavior of the denominator polynomial in <r,c>,  except  for the 

important distinction of r e  not going to zero. Outside the Kerr ring, we may 

consider the “equatorial plane” of z=0. The angle here presented as 'beta' is the 

relative rotation of the local Kerr coordinate system, with respect to the 

Cartesian map as we draw. The Kerr is a locally orthogonal system. Now, step 

back and consider what we need.

 The magnetic field generated as the particle moves along at a low velocity 

(non-relativistically)  describes rings about the axis of motion. We are not here 
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working with the intrinsic particle B-field, rather with a net charge in motion. 

What is not at all clear is the very near-field.  Since momentum density in a field 

is   E x B, we analyze for the electric components orthogonal to v, first in the 

polar case:                              P z = v [sin2βE r
2 + cos2βE θ

2 ] .

 When an electric field has been realized as gradient of a 

potential, it is a covariant vector. Divergence is defined only on a contravariant 

field.  When  we square the field  component: , we actually mean:        

τ = E j E
j          or starting with a field squared,            τ = |E k |2g kk   ( no 

summation ).     This is an invariant form for energy density, highly 

desirable. We need use the appropriate differential volume element. The Kerr 

metric is diagonal except for the negligible terms in the metric. Here we are 

appreciating how much smaller the Schwarzschild mass radius is, compared 

with the Kerr AM radius for Planck's constant in an electron !!  Having an 

invariant form for energy density means that in whatever coordinate system we 

work, we take the differential volume element to be:                     

d 3V =√−D dx 1dx 2dx 3 ;          g11 =
r 2+c 2

r 2+1
   and

g 22 = r 2+c 2

for the Kerr system, and there the square root of the determinant is:

       √−D=(r 2+c 2)sinθ      

We want to know now the inertial  mass calculated in the orthogonal 

sense, for motion in the z=0 plane, say in x. In the former classical 

calculations, we see the square of the sine, which yields integrals of 2/3.  This 

simple radial field will calc the same, regardless of angle of motion, of course, 

simply because velocity is the only preferred angle in the model.  Cosine-

squared yields the same as sine-squared when integrating by d(θ) but here we
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have d(cos)  and 1/3.  Thus we look at  Kerr near-fields which have information,

dependence on polar  θ.  Now we must admit distinctions for an equatorial case 

with velocity along, say, the x-axis, and look at integrating by φ.  In the polar 

case this gives trivially, 2π.  Not so in the sideways case, and analysis shows  

the following expressions to be useful:                                   

[sin2ϕ + cos2βcos2 ϕ]∣E r∣
2  + [sin2ϕ + sin2βcos2 ϕ]∣E θ∣

2 = Πx ,

an unusual expression, but it shows the different vector senses if, say, we plot 

going up to the pole,  Contributing components of E field are those at right 

angles to the motion, and we look separately in the Φ=0  plane, or the Φ=π/2 

plane. Each term integrates to ½  of its former value of 2π, since there is no 

other φ-dependence.                                                                                   

I offer some basic hints as to analysis on the polynomials in  r 2+c 2

in the denominator.  Whenever the numerator has either  r 2   or  c 2 , 

integration by parts clears one order from the denominator along with the 

numerator term. Always a factor of ½  is introduced, from  “ c dc “.  Only when 

the numerator is cleared is  another factor of 1

2r 2
drawn out of the polynomial 

under integration by c.  Let us examine them for energy totals.

FIELD ENERGY:         E r = 1

r 2+c 2
[1+ α
r
P (θ)]   , and    E θ = α

r 2(r 2+c 2)
sinθcosθ  

where P (θ)  is the second-order Legendre  polynomial, equal to   3cos2θ−1 . 

Squaring the field, the integrand along with the

d 3V = (r 2+c 2)sinθd r dθd ϕ =− (r 2+c 2)d r d c d ϕ  

and  the metric term appropriate to each, is:

 τr = [1+α
r
P (θ)]

2

          and        τθ = α2

r 4
sin2θcos2θ .  

A knowledgeable reader can see the wisdom of my field constructions, here.    
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In fact the radial component contributes very little near-field energy. Look at the 

s econd term:                ∫
r e

∞

d r∫
0

1

dc α2r −4s 2c 2dc. .   Substitute for the sine, s.         

∫
r e

∞

d r∫
0

1

dc α2r −4(c 2−c 4) .                                          

The result of having the terms in c n  is  a simple difference of fractions, so this 

is easily analyzed to:            1 /3 r −3(1/3−1 /5)= 2α2

45
r e

−3 .  

Nominally the inner radius is taken as the classical energy radius.  Thus the 

number I have written before, 22.5.  This inversely multiplies the fine structure 

constant as inner energy radius.

  

POLAR INERTIA:   We want to know now the inertial mass calculated for 

motion on the axis of spin.  In the former classical calculations, we see the 

square of the sine, which yields integrals of 2/3.  This simple radial field will calc 

the same, regardless of angle of the velocity vector, of course, simply because 

velocity is the only preferred angle in the model.  Cosine-squared yields the 

same answer when integrating by d(θ) but here we have d(cos)  and 1/3.  We 

must further analyze geometry in the z=0 plane;  now there is need to 

distinguish the equatorial case, integrating by Φ.  In the polar case this gives 

trivially, 2π.  This will not be  so in the sideways case, and we shall deal with 

this. it shows the different vector senses if, say, we plot going up to the pole,  in 

the Φ= 0 plane, or the Φ=π/2 plane, given this electron being trundled  along in 

the x-direction.   One can see the classical result by realizing there is no θ-field. 
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Both integrations around the circle yield π, or ½ the previous result of 2π. Thus 

we recover ½ [ 1+ 1/3 ] or 2/3 as  per  Feynman and have isotropy in the simple 

 

flatspace case.

     Let us consider now Kerr geometry, and start with polar momentum, 

which is to say motion of the electron along its spin axis.  Rather than figuring 

components in the Kerr system, consider the plotted fields.  The plots [3]  are in 

Cartesian coordinates, and show the source disk edge on. If we think in 

Cartesian form, the very near-field is only near the x-axis, with a polar angle 

near 90 degrees. 

              However, our fields are written in Kerr coordinates, and we 

need to complete integrations in this system,  so we must deal with this.  We will

throw out all terms in radial field, since with the Albers fields, only the tangential 

field is strong near the source.   Now we must be careful with field expressions, 

and here is where we could use our angle, β.  What is the physics we seek ?

Momentum density in the field is the vector cross-product    E x B. 

The magnetic part is just the 'blob of charge' making a circular field by moving. 

In this polar case, we are in for a surprise. The relevant E-field lays horizontally 

and so for a component perpendicular to motion, we need no projections.      

Squaring the field, it is in either system, of orthogonal components, so things are

not complicated  and for near-field calcs, only terms in E θ matter.  Thinking 

now in Kerr coordinates,  there is a very different representation of θ, and it 

changes with x  near  the disk source. From here we cease writing notations for 

Kerr coordinates, assuming we are in Kerr space. (For physics near the disk, 

there is close equality, so we could use  θ=β . )  As before  the denominator 

cancels under volume integrations. This is just our field energy integrand, and  
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we need to see a factor of ½ compared to total field energy!  Whence this factor 

if we have no angle projections? 

We are speaking of very near-field, and must consider the physics of

the source.  According to Alexander Burinskii [4]   it is a “very thin layer” and is a

 boundary of the inner false vacuum.  The Albers fields demand a smaller inner 

energy radius, however, than his theory states; he uses the fine structure 

constant.  I use his source physics, however, as a “superconducting layer”. 

Given this, in the very near-field the electric field is as already stated; we may 

however infer a factor of ½ by virtue of the back, or lower half of the charge has 

no effect right here, as a magnetic source.  We may assign the factor of ½ to the

magnetic field strength, in this case of polar motion. This is a very near-field 

which will blend with a far field showing the complete source. We are not 

interested in physics here, however.                            

          

EQUATORIAL INERTIA:    Now let us construct the equatorial inertial result. 

We can see the logic of the form, on page 4 above.  

We write the Cartesian form first and made decisions about the angles so here:  

P x
2=cos2 ϕ(E r

2cos2θ+E θ
2sin2θ)+sin2 ϕ(E r

2) .          

There are two terms of  interest   and again we take, here, sinθ=1 but we 

cannot ignore the implied presence in the last term also !  We should write:

P x
2=1 /2E θ

2+1/2E r
2        

Field components must be transformed into Kerr space, so the rotation in the 

middle of page 6 is used, with angle β. On the equation's LHS are Cartesian 

coords, and on the right are Kerr coords:

E r
2 →E r

2 cos2β+E θ
2 sin2β  and  E θ

2 →E θ
2 cos2β+E r

2sin2β  .                
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We see that                           P x
2=1 /2[E θcos

2β+E θ
2sin2β] ,

and this is a nice surprise, having dependence cancel, and we are left with 

exactly thalf he  result as for the field energy calcs. Have a beer !!! We are free 

to write the integrand as in the first case.

          

CONCLUSIONS:     Relative values of field energy, and then polar and also 

equatorial inertia, of these fields are all equal at 7/105.  We are comparing 

integral results at the same intermediate stage. To complete process, there is

integration over r  of the term in inverse fourth power, so this contributes a 1/3. 

We have summed over a hemisphere. (Near the ring edge the flattened ellipse 

does slant, but this is at very small values of the cosine of θ, which appears in 

the numerator of the term. As stated, this field component is strong at “mid 

latitudes”  but dies off at the pole, and also at the ring edge.) 

It is clear one needs to work in the oblate Kerr coordinate system, 

and also with the Albers electric fields.  We have answer to Feynman's 

challenge.

               

FOOTNOTES:   


